

Quality Assessment of MeDIP

| DNA Concentration:

DNA concentration can be determined by NanoDrop ND-1000 reading of A₂₆₀.

A₂₆₀ X dilution factor X 50 = ug DNA / ml

| DNA Purity:

DNA purity can be determined by NanoDrop ND-1000 readings of A₂₆₀:A₂₈₀ and A₂₆₀:A₂₃₀ ratios.

| Specificity of MeDIP:

Specificity of methylated DNA by immunoprecipitation can be assessed using Real-time quantitative PCR for highly methylated and unmethylated genes.

1. Setup qPCR assay for assessment of MeDIP Quality:

qPCR Assay	Input DNA	MeDIP DNA	Mock IP (Non-Immune serum)
Positive Control			
Primer set*			

* Positive Control Primer set: Primers design according to specific methylated site

2. MeDIP -qPCR Data Analysis (Ct method):

- Normalize each MeDIP DNA fractions' Ct value to the Input DNA fraction Ct value for the same qPCR Assay (Ct) to account for chromatin sample preparation differences. Calculate the % Input for each MeDIP fraction:

$$\% \text{Input} = 2^{(\text{CtlInput} - \text{Ct MeDIP})} \times \text{Fd} \times 100\%$$

Here, Fd is Input dilution factor.

For example, if 100ul sonicated sample is used for MeDIP and 20ul sonicated sample is used as Input, Fd =1/5.

- Adjust the normalized MeDIP fraction Ct value for the normalized background (mock IP) fraction Ct value.

$$\text{Ct [MeDIP /mock IP]} = \text{Ct [normalized MeDIP]} - \text{Ct [normalized mock IP]}$$

3. Assessment of MeDIP Quality:

- The Input DNA Ct value should be less than 30.
- The % Input for the mock IP DNA fraction should be less than 0.01%.
- The MeDIP DNA Ct value should be at least one cycle less than the mock IP DNA Ct value (Ct [mock] – Ct [MeDIP] > 1.0) to be considered quantitatively above the background signal (noise) for the sample.